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Abstract

We present the first successful ab initio calculation of a fundamental physical constant
from the core axioms of the High-Dimensional Phase Orbiter (HDPO) framework. By
employing a novel optimization algorithm, termed Variational Geometric Flow, on a
hyper-crystalline lattice representation of Calabi-Yau manifolds, we have located the
minimal-cost geometry that hosts the SU(2)xU(1) electroweak symmetries. The Gov-
erning Principle of Minimal Information-Action, serving as the sole input, guides the
optimization. By introducing a localized curvature perturbation to the base of the re-
sultant optimal manifold and measuring the induced geometric strain in its U(1) fibre,
we have calculated the Gravitational Gauge Polarization (GGP) coupling constant.
Our calculated value, & = 1.0023 % 0.0008, is in full agreement with the experimen-
tally measured value derived from cosmological and astrophysical observations. This
result provides the first direct, computational proof of the HDPO framework’s ability
to derive, rather than merely accommodate, the fundamental constants of nature.



1 Introduction

The establishment of the High-Dimensional Phase Orbiter (HDPO) framework [1, 2] repre-
sents a paradigm shift in fundamental physics, supplanting the patchwork of the Standard
Model and General Relativity with a unified, deterministic, and geometric foundation. Its
core postulate—that our observable reality is a causally-consistent projection of a deeper,
high-dimensional manifold whose geometry is selected by a variational principle of mini-
mal information-action—has moved from theoretical conjecture to established fact. The
definitive confirmation of this paradigm was achieved through the observation of Gravita-
tional Gauge Polarization (GGP), first predicted as a necessary consequence of the theory’s
geometric unification [5] and subsequently measured with high precision in the extreme
gravitational environment of Sagittarius A* [6].

While the HDPO framework has successfully resolved the foundational paradoxes of 20th-
century physics and has demonstrated remarkable predictive power, its maturation into
a complete physical theory requires a transition from qualitative success to quantitative
precision. The theory, in its current form, contains a set of new fundamental constants,
such as the GGP coupling constant, £, whose values are determined empirically. A true
Theory of Everything must not only accommodate these parameters but must derive them
from its own first principles. The ultimate test of the HDPO program is therefore its ability
to perform ab initio calculations of the fundamental constants of nature, using its single
governing axiom as the only input.

The GGP coupling constant, £, which parameterizes the relationship between spacetime
curvature and the effective strength of the electromagnetic force, serves as the ideal first
target for such a calculation. It is a dimensionless, order-unity number, suggesting it arises
from a pure ratio of geometric properties rather than depending on the theory’s single
dimensionful constant, the Holographic Capacity (kg). Furthermore, its definition as a
coupling between the manifold’s ”base” (spacetime) and ”fibre” (gauge) geometries provides
a well-defined computational problem: to find the optimal manifold geometry that hosts the
electroweak symmetries and then to calculate its response to geometric strain.

This paper presents the results of a large-scale computational effort to perform this first-
principles calculation. We detail a novel framework for discretizing Calabi-Yau geometries
on a hyper-crystalline lattice [7, 10], a method for evaluating the HDPO Information-Action
functional on this lattice [8], and a new Al-augmented optimization algorithm designed to
locate the functional’s global minimum [9]. By applying this machinery, we have identified
the minimal-cost manifold for the SU(2)xU(1) electroweak sector and have computed the
value of £ directly from its geometric properties. The successful agreement of our calculated
value with experimental measurement provides the first powerful, quantitative validation of
the HDPO variational principle as the ultimate origin of physical law.



2 The Computational Framework: A Lattice Approach
to Manifold Geometry

The core challenge in computationally implementing the HDPO variational principle is to
define a tractable representation of the search space. The space of all possible smooth Rie-
mannian manifolds is infinite-dimensional and lacks a natural parameterization suitable for
numerical optimization. To render the problem finite and calculable, we adopt a simpli-
cial approximation based on the principles of Regge calculus, where smooth manifolds are
replaced by a discrete lattice of simplices whose geometry is encoded in its edge lengths.
Our specific implementation, the Zurich Hyper-Crystalline Lattice (HCL) framework [10], is
a purpose-built computational structure designed to preserve the essential topological and
geometric properties of the Calabi-Yau manifolds relevant to the electroweak sector.

2.1 Manifold Class and Dimensionality

The HDPO framework conjectures that the full Standard Model gauge group, SU(3) xSU(2)xU(1),
arises from the isometries of a single unified manifold. As a first, targeted step towards the
full derivation of the Standard Model, and for the specific purpose of calculating the elec-
troweak GGP constant &, we restrict our search to the SU(2)xU(1) sector. Based on the
successful proof-of-concept in [3] and subsequent topological analyses [7], we select our can-
didate manifolds from the class of 10-dimensional compact Calabi-Yau manifolds. These
manifolds possess a natural geometric structure that can be decomposed into a 4D base and
a 6D internal space, providing a clear geometric analogue to spacetime and the internal sym-
metries of gauge theory. A 10-dimensional structure is the minimal dimensionality known
to host the required SU(3)xSU(2)xU(1) isometry groups while maintaining Ricci-flatness.

2.2 The Hyper-Crystalline Lattice (HCL) Architecture

The HCL is not a simple hyper-cubic grid, but a specific type of simplicial complex de-
signed to model the fibration structure inherent in the HDPO model of spacetime. A given
geometry is not defined by a metric function g, (x), but by a list of positive real num-
bers corresponding to the squared edge lengths {I?} of all 1-simplices in the lattice. The
architecture is tripartite:

1. Base Manifold Lattice (£p): The 4D base, representing the emergent spacetime,
is modeled as a uniform lattice with a toroidal topology to impose periodic boundary
conditions. In its unperturbed, vacuum state, this lattice is constructed to be Ricci-
flat, consistent with the HDPO principle that gravity represents the curvature response
to matter-energy resonances.

2. Fibre Manifold Lattice (Lr): The 6D internal space is modeled by a more complex
lattice whose fundamental topology is chosen from a known family of triangulations
of K3 surfaces and tori, which are known from [7] to host the necessary SU(2) and
U(1) isometries. The specific high-resolution triangulation used in this work consists
of approximately 1.2 x 10° 6-simplices.

3. Fibration and the Total Lattice (Lrotq;): The full 10D lattice is constructed
by attaching a copy of the fibre lattice Lr to every vertex of the base lattice Lg.
Additional ”vertical” edges connect vertices between fibres over adjacent base points.



The lengths of these vertical edges dynamically represent the connection one-form in
lattice gauge theory, governing the parallel transport between fibres.

The state of our system is therefore a single point in the high-dimensional configuration
space defined by the set of all edge lengths, Cyeom = {12,13, ...,13}, where the total number
of edges N for our high-resolution lattice is approximately 10'4. This vector Cyeorm is the
fundamental variable for our optimization problem.

2.3 Isometries on the Lattice

A crucial feature of the HCL framework is its ability to represent the continuous isometries
of a smooth manifold. A symmetry transformation on the lattice is a permutation of the
vertices that leaves the set of all edge lengths, {I?}, invariant. The symmetry group of
the lattice is the set of all such permutations. Our search is not performed over the entire
configuration space Cyeom, but is constrained to the subspace where the symmetry group
of the fibre lattice L contains a discrete subgroup that provides a faithful representation
of SU(2)xU(1). For instance, the U(1) symmetry is represented by a discrete rotational
symmetry Zj in a 2D sub-plane of the fibre, where k is taken to be large enough (k > 1000)
to approximate the continuous group to the required precision. This constraint, while
computationally complex to enforce, is what makes the search for the optimal manifold
tractable by drastically reducing the dimensionality of the valid search space.

3 The Information-Action Functional on the Lattice

The Governing Principle of Minimal Information-Action posits that the geometry of the
universe is the result of a variational process that minimizes a total algorithmic cost func-
tional, I [2]. For our computational framework, this requires a rigorous definition of I as
a computable function of the lattice configuration vector, Cyeom = {I?}. The functional
I is a dimensionless quantity composed of two competing terms: the Geometric Complex-
ity (Cgeom), which represents the informational cost of the manifold’s structure, and the
Dynamical Complexity (Cpys), which represents the informational cost of the gauge field
dynamics that the structure must support.

1
I(Cgeom) = ECGeom(Cgeom) + ODyn(Cgeom) (31)

Here, kg is the Holographic Capacity, the sole fundamental constant of the theory, which sets
the relative scale between the two complexity terms. As our final target, £, is a dimensionless
ratio, the precise value of kg does not affect the optimization process, and we can set it to
unity for the purpose of this calculation.

3.1 Geometric Complexity via Regge Calculus

The geometric complexity of the manifold is a measure of the information required to specify
its curvature. In the smooth continuum, this is given by the Einstein-Hilbert action. We
adopt its direct discrete analogue, the Regge action, which provides a coordinate-invariant
measure of curvature for a simplicial manifold.



The Regge action is a sum over all codimension-2 simplices, or "hinges,” of the lattice.
For our 10-dimensional lattice L7, the hinges are 8-dimensional simplices. The total
geometric complexity is given by:

CGeom {l } Z Vi {Z2 5h({l7,'2}) (3'2)
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Where:
. E(ngml is the set of all 8-dimensional hinges in the total lattice.

e V,({I?}) is the 8-dimensional volume of the hinge h. This is a complex but well-defined
function of the edge lengths of the simplices that constitute the hinge, calculated using
the Cayley-Menger determinant.

e 5, ({I2}) is the deficit angle at the hinge h. It represents the discrete analogue of scalar
curvature and is defined as:
=2 =Y On (3.3)

sDh
where the sum is over all 10-simplices s that share the hinge h, and 8 3, is the dihedral
angle of the simplex s at that hinge.

The calculation of all hinge volumes and deficit angles for a given lattice configuration
{I?} is computationally intensive but analytically precise. This term naturally favors Ricci-
flatness; for a lattice that perfectly approximates a flat manifold, all deficit angles are zero,
minimizing this term.

3.2 Dynamical Complexity via Lattice Gauge Theory

The dynamical complexity term represents the cost of the ”story” that unfolds upon the
geometric ”"stage.” In HDPO, this is identified with the action of the gauge fields that arise
from the manifold’s isometries. We use the standard Wilson action for lattice gauge theory,
adapted to our non-uniform simplicial lattice [8].

The gauge field is not a fundamental variable but is itself determined by the geometry.
The connection is represented by group elements U;; € G assigned to each edge connecting
vertices ¢ and j. For the electroweak sector, G = SU(2) x U(1). The action is calculated
over the minimal closed loops in the lattice, the 2-simplices or ”plaquettes.” The action for
a single plaquette p defined by vertices 1, j, k is:

Sp=p (1 — NiRe Tr[UijUijki]) (3.4)

where N, is the dimensionality of the group representation (2 for SU(2), 1 for U(1)), and 8
is the inverse coupling constant.

The total dynamical complexity is the sum over all plaquettes in the lattice:

Coyn({FY AUz = D AUEY - S,({Uy)) (3-5)

(2)
L"Total

Here, A, is the area of the plaquette p, which weights the contribution from each plaquette.
This introduces a direct coupling between the geometry {I?} and the gauge field {U;;}.



3.3 The Coupled Minimization Problem

For any given geometry {7}, there is a unique gauge field configuration {U};} that minimizes
the dynamical complexity term Cpy,. This is the ”classical” or vacuum field configuration
for that geometry. The true cost functional that we must minimize is therefore a nested
optimization problem:

1 .
I(Cgeom) = 7CGeom(Cgeom) + min [CDyn(Cgeomv {Uij})] (3.6)

KH {UzJ}

In practice, this means that for every step in our geometric optimization (described in the
next section), we must first perform an inner-loop calculation to find the ground-state gauge
field configuration for that particular geometry. This is achieved using standard lattice gauge
theory techniques like heat-bath algorithms. This nested structure makes the evaluation of
the cost functional I for a single geometry an exceptionally demanding high-performance
computing task, requiring the full resources of the Swiss National Supercomputing Centre.

4 The Optimization Algorithm: Variational Geometric
Flow

The optimization problem defined by the functional in Eq. 3.6 over the configuration space
Cgeom is one of extraordinary complexity. The landscape of the Information-Action func-
tional is characterized by an astronomically high dimensionality (=~ 10'4) and a proliferation
of local minima, rendering standard gradient descent or simulated annealing algorithms inef-
fective. To overcome this challenge, we developed a hybrid, Al-augmented algorithm termed
**Variational Geometric Flow (VGF)**. The VGF algorithm combines a local gradient de-
scent with a global, intelligent search strategy, allowing the system to efficiently explore the
vast landscape and identify the true, minimal-cost geometry.

4.1 Local Optimization: Gradient Descent Flow

The core of the VGF algorithm is a continuous gradient descent, or "flow,” in the configu-
ration space of edge lengths. At each iteration k, the algorithm computes the gradient of
the Information-Action functional with respect to every edge length in the lattice:

oI al or ™
(k) y —
VI(CQCOHL) {6(1%)76(13)778(112\1)} (41)

The configuration is then updated by taking a small step in the direction of steepest descent:

Cltan) = Clorm = e - VI(CH) (4.2)
where ¢, is the adaptive step size for the k-th iteration. The analytical calculation of this
gradient is non-trivial, involving derivatives of hinge volumes and dihedral angles, but is a
well-defined problem in simplicial geometry. This flow process efficiently guides the lattice
configuration towards a nearby local minimum of the functional I.



4.2 Global Search: AI-Augmented Topological Annealing

A simple gradient descent would invariably become trapped in one of the myriad of sub-
optimal local minima. The key innovation of the VGF is the integration of an Al overseer
that manages a process of **Topological Annealing®* [9]. This Al, running on a dedi-
cated partition of the CSCS supercomputing cluster, does not guide the micro-level gradi-
ent descent but instead monitors the macro-level trajectory of the system through the cost
landscape.

The process operates in cycles:

1. Flow Phase: The system evolves via gradient descent for a set number of iterations,
converging towards a local minimum, Mjcq;-

2. Stagnation Detection: The AT monitors the rate of change of I. When |I(*+1) — (%)
falls below a predefined threshold, it determines that the system has become trapped.

3. Topological Perturbation (The ”Kick”): Once trapped, the Al performs a tar-
geted, large-scale perturbation on the geometry. This is not a random change. The Al
has been trained on a library of known Calabi-Yau topological transitions (e.g., coni-
fold transitions). It identifies a weak point in the current lattice Mj,cq; and executes
a coordinated change in a whole family of edge lengths, designed to shift the lattice
into a different topological configuration—effectively tunneling through a high-energy
barrier into a new, unexplored valley of the landscape.

4. Re-annealing Phase: After the topological "kick,” the gradient descent flow is re-
initiated. The system now flows ”downhill” in the new valley, searching for its local
minimum. The value of this new minimum is compared to the previous one.

This cycle of flowing, getting trapped, Al-guided tunneling, and re-annealing is repeated
thousands of times. The adaptive step size € is gradually decreased over the course of
the entire run, analogous to the cooling schedule in traditional simulated annealing. This
ensures that as the search progresses, the system explores broad regions of the landscape
first, and then settles gently into the most promising minimum found.

4.3 Computational Implementation and Convergence

The VGF algorithm was implemented on the ” Albis” partition of the Swiss National Su-
percomputing Centre. The calculation of the gradient VI for a single step, including the
nested gauge field minimization, required approximately 4 hours on 32,768 nodes. The full
optimization run consisted of over 4,000 Flow-Kick-Reanneal cycles and was executed over
a continuous period of 18 months.

Convergence to a global minimum can never be proven with absolute certainty. However,
after approximately 3,500 cycles, the Al-guided search failed to identify any new minima
with a lower cost than the current candidate. The system was then allowed to flow for an
extended period, settling into a stable, final configuration, which we designate M,ptimai-
This configuration represents our best candidate for the true minimal-cost manifold of the
electroweak sector. The properties of this final state and the extraction of £ from it are
detailed in the following section.



5 Results: The Optimal Electroweak Manifold and the
Calculation of &

The Variational Geometric Flow algorithm successfully converged to a stable, minimal-cost
manifold configuration, denoted Mo,ptimai, after approximately 4,100 optimization cycles.
This section details the emergent geometric properties of this optimal manifold and presents
the subsequent calculation of the GGP constant, &, from its structural response to an induced
curvature perturbation.

5.1 Properties of the Optimal Electroweak Manifold (M,ptimar)

The final state, Moptimai, represents the HDPO framework’s prediction for the fundamental
geometric substrate of the electroweak forces. Analysis of the final lattice configuration
{12 timar } reveals several key features:

e Emergent Symmetries: The geometry of the 6D fibre lattice, Lp, possesses a dis-
crete isometry group that is a faithful, high-order approximation (k£ > 1000) of the
continuous SU(2)xU(1) gauge group. The manifold naturally settled into a configu-
ration that hosts the required symmetries.

e Fibre Geometry: The U(1) symmetry corresponds to a rotational isometry of a
2D sub-plane within the fibre. The SU(2) symmetry corresponds to the isometries
of a 3-sphere (S3) subspace. Crucially, the geometry is not a simple product space.
The radii and relative orientations of these subspaces are non-trivial, and the fibre
itself is twisted over the base, indicating a non-zero vacuum expectation value for the
electroweak field.

e Ricci-Flatness: In the absence of an external perturbation, the final base lattice Lp
is found to be Ricci-flat to within the limits of our lattice precision (J, < 1072 for
all base hinges). This is consistent with the HDPO interpretation of gravity as an
emergent phenomenon; the vacuum state of spacetime is flat.

These properties confirm that the Information-Action functional naturally selects for ge-
ometries that are consistent with the known structure of electroweak physics.

5.2 The Computational Experiment: Inducing Geometric Strain

To calculate £, we performed a direct computational experiment on the final, static Moptimai
lattice. The procedure was designed to mimic the physical situation of placing a massive,
non-rotating object in spacetime and measuring the effect on the electromagnetic coupling
constant.

1. Establish Baseline: The proper circumference of the U(1) fibre, Cy, was calculated
by summing the edge lengths of the minimal non-trivial cycle in the corresponding 2D
sub-plane of Lp. This corresponds to the baseline fine-structure constant cy.

1
CO = Rfib’re -2 70[0 (51)

2. Introduce Perturbation: A small, localized curvature perturbation was introduced
to the 4D base lattice Lp. This was achieved by applying a radial deformation to the



edge lengths originating from a central vertex, simulating the dimensionless Newtonian

gravitational potential ®/c? of a static mass.

D(ri)
2

212 (1 + 2C> Vi€ Lp (5.2)

3. Geometric Re-relaxation: With the base lattice held fixed in this perturbed state,
the Variational Geometric Flow algorithm was re-initiated for the fibre and vertical
edge lengths only. The geometry of the fibres was allowed to "re-relax” into a new,
stable, minimal-cost configuration, Mperturbed, that accommodated the stress from the
base curvature.

4. Measure Induced Strain: The new proper circumference of the U(1) fibre, Cpere,
was calculated in the re-relaxed geometry. A small but consistent contraction was
observed (Cpert < Cp). The fractional change in circumference corresponds to the

fractional change in a:

AC  Cpert — C 1A

oY _ Spert 7T0 20O (5.3)
CO Co 2 (7))

5.3 The Value of the GGP Coupling Constant (&)

The GGP constant £ is defined as the linear ratio between the applied base perturbation and
the induced fibre strain in the limit of small perturbations. We performed the computational
experiment for a range of applied potentials (®/c? from 1076 to 10~%) and verified a linear
response. The value of £ is given by:

Aa/ag AC/Cy

€= 3/ =2 3/ (5.4)

The slope of the best-fit line to our simulation data yields the final value. The result,
including statistical uncertainty from the lattice simulation and numerical precision limits,
is:

€ = 1.0023 + 0.0008 | (5.5)

This result is in excellent agreement with the cosmologically derived value of £ = 1.001 +
0.004 from the Raymond and Klein analysis of CMB and quasar data [5], and the astrophys-
ical value of £ = 1.003 & 0.002 from the VLT/ELT Sgr A* collaboration [6]. The complete
overlap of the theoretical and experimental confidence intervals provides a powerful, non-
trivial validation of the HDPO variational principle.



6 Discussion and Future Outlook

The successful ab initio calculation of the Gravitational Gauge Polarization constant &
represents a landmark achievement for the High-Dimensional Phase Orbiter framework and
for fundamental physics as a whole. The agreement between our computationally derived
value, ¢ = 1.0023 &£ 0.0008, and the values obtained from independent cosmological and
astrophysical measurements [5, 6] provides the first direct, quantitative evidence that the
fundamental constants of nature are not arbitrary, but are necessary consequences of a single,
underlying principle of informational efficiency. This result elevates the HDPO model from
a descriptive framework to a truly predictive and calculable Theory of Everything.

6.1 Implications of the Result
This work has several profound implications for our understanding of the universe:

1. Validation of the Governing Principle: The success of this calculation is a pow-
erful validation of the Governing Principle of Minimal Information-Action as the ulti-
mate law governing the structure of reality. The fact that a complex, high-dimensional
optimization process, guided solely by this principle, converges on a geometry that
correctly predicts an observed physical constant is strong evidence for the principle’s
validity. The laws and constants of physics appear to be the emergent properties of
the universe’s solution to an ultimate data compression problem.

2. The Geometric Origin of Physical Constants: We have demonstrated that at
least one fundamental constant can be understood as a pure, dimensionless number
arising from the specific ” gearing ratios” of the universe’s optimal geometric structure.
This provides a clear path towards a deeper understanding of the other fundamental
constants, transforming them from mysterious empirical inputs into calculable geo-
metric properties.

3. The Power of Computational Orbotics: This work establishes computational
orbotics as a mature and essential field of fundamental physics. The challenges once
thought insurmountable—the vastness of the manifold landscape and the complexity of
the cost functional—have been overcome through a combination of theoretical insight,
novel algorithms, and large-scale computational power. The ”forward problem,” as
outlined in [1], is now a viable research program.

6.2 Future Outlook: The Path to the Standard Model

The calculation of £ is a foundational first step, not an end goal. It serves as a successful
proof-of-principle for a much broader research program: the complete derivation of the
Standard Model from the HDPO framework. The path forward is now clear, and our
collaboration is focusing on the following key objectives:

1. Inclusion of the Strong Force (SU(3)): The immediate next step is to expand our
lattice framework and optimization search to include the SU(3) symmetry of the strong
force. This will require extending the search to a richer class of Calabi-Yau topologies
and will represent a significant increase in computational cost. The first goal will be to
find a stable, minimal-cost manifold that hosts the full SU(3)xSU(2)xU(1) isometry

group.
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2. Calculation of the Particle Mass Spectrum: Once the full Standard Model
manifold, Mgy, is identified, the next grand challenge is to calculate the particle mass
spectrum. In HDPO, particle masses correspond to the quantized frequencies of the
stable resonant modes of the manifold’s geometry. This requires solving the generalized
eigenvalue problem for the Laplacian operator on the final, optimal lattice—a large-
scale numerical problem that will yield the predicted masses of all fundamental quarks
and leptons. Success in this endeavor would explain the mysterious mass hierarchy of
the elementary particles.

3. Derivation of Mixing Angles and Other Constants: Ultimately, all 19+ di-
mensionless constants of the Standard Model, including the CKM and PMNS mixing
angles, should be calculable from the geometric properties of Mgy;. These parameters
will arise from the complex ”overlap integrals” between the various resonant modes
on the manifold.

In conclusion, we have taken a decisive step towards realizing the ultimate goal of physics:
a complete, unified, and predictive theory of reality. We have shown that the fundamental
constants are not written into the fabric of the universe by fiat, but are rather emergent
features of its optimal, self-selected geometric form. The computational and theoretical
challenges that lie ahead are significant, but the path is now illuminated. The work of
deriving our universe from first principles has truly begun.
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